Skip to main content

T4: Agentic Component Integration

Source: T4_ Agentic Component Integration.pdf Status: 🚧 Extraction in Progress Roadmap: Technical Architecture Roadmap

Overview​

Agentic Component Integration enables AI agents to discover, select, and use components intelligently. This specification defines the patterns and mechanisms for integrating agents with the component ecosystem.

Agent-Component Bridge​

Component Interface​

Component Invocation Interface

pub trait ComponentInterface {
async fn invoke(&self, input: ComponentInput, context: &InvocationContext) -> Result<ComponentOutput>;
fn get_interface(&self) -> &ComponentInterfaceSpec;
fn validate_input(&self, input: &ComponentInput) -> ValidationResult;
}

Component Input/Output

pub struct ComponentInput {
pub parameters: HashMap<String, serde_json::Value>,
pub context: Option<Context>,
pub metadata: InvocationMetadata,
}

pub struct ComponentOutput {
pub result: serde_json::Value,
pub metadata: OutputMetadata,
pub performance: PerformanceMetrics,
}

Agent Component Interface​

Agent-to-Component Bridge

pub struct AgentComponentBridge {
component_registry: ComponentRegistry,
invocation_engine: InvocationEngine,
}

impl AgentComponentBridge {
pub async fn invoke_component(
&self,
agent: &AgentId,
component: &ComponentId,
input: ComponentInput,
) -> Result<ComponentOutput> {
// 1. Validate agent permissions
// 2. Load component
// 3. Validate input
// 4. Execute component
// 5. Return result
}
}

Component Invocation from Agents​

Invocation Patterns

  • Synchronous invocation
  • Asynchronous invocation
  • Streaming invocation
  • Batch invocation

Invocation API

pub trait ComponentInvoker {
async fn invoke(&self, request: InvocationRequest) -> Result<InvocationResponse>;
async fn invoke_stream(&self, request: InvocationRequest) -> Result<Stream<OutputChunk>>;
async fn invoke_batch(&self, requests: Vec<InvocationRequest>) -> Result<Vec<InvocationResponse>>;
}

Result Handling​

Result Processing

pub struct ResultHandler {
transformers: Vec<ResultTransformer>,
validators: Vec<ResultValidator>,
}

impl ResultHandler {
pub fn process(&self, output: ComponentOutput) -> Result<ProcessedResult> {
// Transform and validate result
}
}

Error Management

pub enum ComponentError {
InvocationFailed(InvocationError),
ValidationFailed(ValidationError),
Timeout(Duration),
ResourceExhausted,
PermissionDenied,
}

Async Component Execution​

Async Execution Model

pub struct AsyncExecutor {
executor: tokio::runtime::Handle,
task_registry: TaskRegistry,
}

impl AsyncExecutor {
pub async fn execute_async(
&self,
component: &ComponentId,
input: ComponentInput,
) -> Result<TaskId> {
// Submit async task
}

pub async fn get_result(&self, task_id: &TaskId) -> Result<ComponentOutput> {
// Retrieve async result
}
}

Intelligent Composition​

Agent-Driven Component Selection​

Selection Strategy

pub trait ComponentSelector {
fn select_components(
&self,
agent: &AgentId,
goal: &Goal,
context: &SelectionContext,
) -> Vec<SelectedComponent>;
}

Selection Criteria

  • Component capabilities
  • Performance characteristics
  • Cost considerations
  • Quality metrics
  • Compatibility

Selection Algorithm

pub struct IntelligentSelector {
scoring_engine: ScoringEngine,
learning_model: LearningModel,
}

impl ComponentSelector for IntelligentSelector {
fn select_components(&self, agent: &AgentId, goal: &Goal, context: &SelectionContext) -> Vec<SelectedComponent> {
// 1. Find candidate components
// 2. Score candidates
// 3. Apply learning insights
// 4. Select optimal set
}
}

Context-Aware Composition​

Context Gathering

pub struct CompositionContext {
pub agent_context: AgentContext,
pub workspace_context: WorkspaceContext,
pub execution_context: ExecutionContext,
pub historical_context: HistoricalContext,
}

Context-Aware Selection

pub trait ContextAwareSelector {
fn select_with_context(
&self,
goal: &Goal,
context: &CompositionContext,
) -> Result<Composition>;
}

Dynamic Adaptation​

Adaptation Strategies

  • Component replacement
  • Parameter adjustment
  • Composition restructuring
  • Fallback selection

Adaptation Engine

pub trait AdaptationEngine {
fn adapt(&self, composition: &Composition, feedback: &Feedback) -> Result<AdaptedComposition>;
fn monitor(&self, composition: &Composition) -> AdaptationSignals;
}

Learning from Usage Patterns​

Usage Pattern Analysis

pub struct UsageAnalyzer {
pattern_detector: PatternDetector,
learning_engine: LearningEngine,
}

impl UsageAnalyzer {
pub fn analyze_patterns(&self, usage_history: &[UsageRecord]) -> UsagePatterns {
// Detect patterns in component usage
}

pub fn learn_from_usage(&self, patterns: &UsagePatterns) -> LearnedInsights {
// Extract insights for future selection
}
}

Multi-Agent Coordination​

Agent Collaboration Patterns​

Collaboration Types

  • Sequential collaboration
  • Parallel collaboration
  • Hierarchical collaboration
  • Peer-to-peer collaboration

Collaboration Framework

pub struct CollaborationFramework {
coordinator: AgentCoordinator,
communication: CommunicationChannel,
}

pub trait AgentCoordinator {
fn coordinate(&self, agents: &[AgentId], task: &Task) -> Result<CoordinationPlan>;
fn execute_collaboration(&self, plan: &CoordinationPlan) -> Result<CollaborationResult>;
}

Shared Component State​

State Management

pub struct SharedState {
state_store: StateStore,
synchronization: SynchronizationProtocol,
}

impl SharedState {
pub fn get(&self, key: &str) -> Result<Option<StateValue>>;
pub fn set(&self, key: &str, value: StateValue) -> Result<()>;
pub fn sync(&self) -> Result<SyncResult>;
}

State Synchronization

  • Event-driven synchronization
  • Periodic synchronization
  • On-demand synchronization
  • Conflict resolution

Conflict Resolution​

Conflict Types

  • Resource conflicts
  • State conflicts
  • Component conflicts
  • Priority conflicts

Resolution Strategies

pub enum ConflictResolution {
FirstWins,
LastWins,
PriorityBased,
Negotiation,
Manual,
}

Workflow Orchestration​

Workflow Definition

pub struct Workflow {
pub steps: Vec<WorkflowStep>,
pub dependencies: Vec<Dependency>,
pub error_handling: ErrorHandlingStrategy,
}

pub struct WorkflowStep {
pub agent: AgentId,
pub component: ComponentId,
pub input: ComponentInput,
pub condition: Option<Condition>,
}

Workflow Execution

pub trait WorkflowOrchestrator {
fn execute(&self, workflow: &Workflow) -> Result<WorkflowResult>;
fn execute_parallel(&self, steps: &[WorkflowStep]) -> Result<Vec<StepResult>>;
}

Integration Patterns​

Pattern 1: Direct Invocation​

Pattern Description Agent directly invokes component with explicit parameters.

Use Cases

  • Simple, well-defined tasks
  • Performance-critical operations
  • Deterministic requirements

Implementation

let output = agent_component_bridge
.invoke_component(agent_id, component_id, input)
.await?;

Pattern 2: Goal-Based Selection​

Pattern Description Agent specifies goal, system selects and invokes appropriate components.

Use Cases

  • Complex, multi-step tasks
  • Dynamic requirements
  • Exploration scenarios

Implementation

let composition = intelligent_selector
.select_components(agent_id, &goal, &context)?;

let result = composition_engine
.execute(&composition)
.await?;

Pattern 3: Learning-Based Selection​

Pattern Description System learns from past usage to improve component selection.

Use Cases

  • Repeated tasks
  • Optimization scenarios
  • Personalization

Implementation

let insights = usage_analyzer
.learn_from_usage(&usage_history)?;

let composition = learning_selector
.select_with_insights(&goal, &insights)?;

Performance Considerations​

Optimization Strategies​

  • Component caching
  • Result caching
  • Parallel execution
  • Lazy loading
  • Connection pooling

Monitoring and Metrics​

Metrics

  • Invocation latency
  • Success rate
  • Resource usage
  • Component utilization
  • Error rates

Implementation Status​

πŸ“‹ Planned​

  • Agent component interface
  • Component invocation from agents
  • Result handling and error management
  • Async component execution
  • Agent-driven component selection
  • Context-aware composition
  • Dynamic adaptation
  • Learning from usage patterns
  • Agent collaboration patterns
  • Shared component state
  • Conflict resolution
  • Workflow orchestration

Note: This specification is extracted from the OpenKor T4 document. Detailed integration patterns may need manual review from the source PDF.