T4: Agentic Component Integration
Source: T4_ Agentic Component Integration.pdf
Status: π§ Extraction in Progress
Roadmap: Technical Architecture Roadmap
Overviewβ
Agentic Component Integration enables AI agents to discover, select, and use components intelligently. This specification defines the patterns and mechanisms for integrating agents with the component ecosystem.
Agent-Component Bridgeβ
Component Interfaceβ
Component Invocation Interface
pub trait ComponentInterface {
async fn invoke(&self, input: ComponentInput, context: &InvocationContext) -> Result<ComponentOutput>;
fn get_interface(&self) -> &ComponentInterfaceSpec;
fn validate_input(&self, input: &ComponentInput) -> ValidationResult;
}
Component Input/Output
pub struct ComponentInput {
pub parameters: HashMap<String, serde_json::Value>,
pub context: Option<Context>,
pub metadata: InvocationMetadata,
}
pub struct ComponentOutput {
pub result: serde_json::Value,
pub metadata: OutputMetadata,
pub performance: PerformanceMetrics,
}
Agent Component Interfaceβ
Agent-to-Component Bridge
pub struct AgentComponentBridge {
component_registry: ComponentRegistry,
invocation_engine: InvocationEngine,
}
impl AgentComponentBridge {
pub async fn invoke_component(
&self,
agent: &AgentId,
component: &ComponentId,
input: ComponentInput,
) -> Result<ComponentOutput> {
// 1. Validate agent permissions
// 2. Load component
// 3. Validate input
// 4. Execute component
// 5. Return result
}
}
Component Invocation from Agentsβ
Invocation Patterns
- Synchronous invocation
- Asynchronous invocation
- Streaming invocation
- Batch invocation
Invocation API
pub trait ComponentInvoker {
async fn invoke(&self, request: InvocationRequest) -> Result<InvocationResponse>;
async fn invoke_stream(&self, request: InvocationRequest) -> Result<Stream<OutputChunk>>;
async fn invoke_batch(&self, requests: Vec<InvocationRequest>) -> Result<Vec<InvocationResponse>>;
}
Result Handlingβ
Result Processing
pub struct ResultHandler {
transformers: Vec<ResultTransformer>,
validators: Vec<ResultValidator>,
}
impl ResultHandler {
pub fn process(&self, output: ComponentOutput) -> Result<ProcessedResult> {
// Transform and validate result
}
}
Error Management
pub enum ComponentError {
InvocationFailed(InvocationError),
ValidationFailed(ValidationError),
Timeout(Duration),
ResourceExhausted,
PermissionDenied,
}
Async Component Executionβ
Async Execution Model
pub struct AsyncExecutor {
executor: tokio::runtime::Handle,
task_registry: TaskRegistry,
}
impl AsyncExecutor {
pub async fn execute_async(
&self,
component: &ComponentId,
input: ComponentInput,
) -> Result<TaskId> {
// Submit async task
}
pub async fn get_result(&self, task_id: &TaskId) -> Result<ComponentOutput> {
// Retrieve async result
}
}
Intelligent Compositionβ
Agent-Driven Component Selectionβ
Selection Strategy
pub trait ComponentSelector {
fn select_components(
&self,
agent: &AgentId,
goal: &Goal,
context: &SelectionContext,
) -> Vec<SelectedComponent>;
}
Selection Criteria
- Component capabilities
- Performance characteristics
- Cost considerations
- Quality metrics
- Compatibility
Selection Algorithm
pub struct IntelligentSelector {
scoring_engine: ScoringEngine,
learning_model: LearningModel,
}
impl ComponentSelector for IntelligentSelector {
fn select_components(&self, agent: &AgentId, goal: &Goal, context: &SelectionContext) -> Vec<SelectedComponent> {
// 1. Find candidate components
// 2. Score candidates
// 3. Apply learning insights
// 4. Select optimal set
}
}
Context-Aware Compositionβ
Context Gathering
pub struct CompositionContext {
pub agent_context: AgentContext,
pub workspace_context: WorkspaceContext,
pub execution_context: ExecutionContext,
pub historical_context: HistoricalContext,
}
Context-Aware Selection
pub trait ContextAwareSelector {
fn select_with_context(
&self,
goal: &Goal,
context: &CompositionContext,
) -> Result<Composition>;
}
Dynamic Adaptationβ
Adaptation Strategies
- Component replacement
- Parameter adjustment
- Composition restructuring
- Fallback selection
Adaptation Engine
pub trait AdaptationEngine {
fn adapt(&self, composition: &Composition, feedback: &Feedback) -> Result<AdaptedComposition>;
fn monitor(&self, composition: &Composition) -> AdaptationSignals;
}
Learning from Usage Patternsβ
Usage Pattern Analysis
pub struct UsageAnalyzer {
pattern_detector: PatternDetector,
learning_engine: LearningEngine,
}
impl UsageAnalyzer {
pub fn analyze_patterns(&self, usage_history: &[UsageRecord]) -> UsagePatterns {
// Detect patterns in component usage
}
pub fn learn_from_usage(&self, patterns: &UsagePatterns) -> LearnedInsights {
// Extract insights for future selection
}
}
Multi-Agent Coordinationβ
Agent Collaboration Patternsβ
Collaboration Types
- Sequential collaboration
- Parallel collaboration
- Hierarchical collaboration
- Peer-to-peer collaboration
Collaboration Framework
pub struct CollaborationFramework {
coordinator: AgentCoordinator,
communication: CommunicationChannel,
}
pub trait AgentCoordinator {
fn coordinate(&self, agents: &[AgentId], task: &Task) -> Result<CoordinationPlan>;
fn execute_collaboration(&self, plan: &CoordinationPlan) -> Result<CollaborationResult>;
}
Shared Component Stateβ
State Management
pub struct SharedState {
state_store: StateStore,
synchronization: SynchronizationProtocol,
}
impl SharedState {
pub fn get(&self, key: &str) -> Result<Option<StateValue>>;
pub fn set(&self, key: &str, value: StateValue) -> Result<()>;
pub fn sync(&self) -> Result<SyncResult>;
}
State Synchronization
- Event-driven synchronization
- Periodic synchronization
- On-demand synchronization
- Conflict resolution
Conflict Resolutionβ
Conflict Types
- Resource conflicts
- State conflicts
- Component conflicts
- Priority conflicts
Resolution Strategies
pub enum ConflictResolution {
FirstWins,
LastWins,
PriorityBased,
Negotiation,
Manual,
}
Workflow Orchestrationβ
Workflow Definition
pub struct Workflow {
pub steps: Vec<WorkflowStep>,
pub dependencies: Vec<Dependency>,
pub error_handling: ErrorHandlingStrategy,
}
pub struct WorkflowStep {
pub agent: AgentId,
pub component: ComponentId,
pub input: ComponentInput,
pub condition: Option<Condition>,
}
Workflow Execution
pub trait WorkflowOrchestrator {
fn execute(&self, workflow: &Workflow) -> Result<WorkflowResult>;
fn execute_parallel(&self, steps: &[WorkflowStep]) -> Result<Vec<StepResult>>;
}
Integration Patternsβ
Pattern 1: Direct Invocationβ
Pattern Description Agent directly invokes component with explicit parameters.
Use Cases
- Simple, well-defined tasks
- Performance-critical operations
- Deterministic requirements
Implementation
let output = agent_component_bridge
.invoke_component(agent_id, component_id, input)
.await?;
Pattern 2: Goal-Based Selectionβ
Pattern Description Agent specifies goal, system selects and invokes appropriate components.
Use Cases
- Complex, multi-step tasks
- Dynamic requirements
- Exploration scenarios
Implementation
let composition = intelligent_selector
.select_components(agent_id, &goal, &context)?;
let result = composition_engine
.execute(&composition)
.await?;
Pattern 3: Learning-Based Selectionβ
Pattern Description System learns from past usage to improve component selection.
Use Cases
- Repeated tasks
- Optimization scenarios
- Personalization
Implementation
let insights = usage_analyzer
.learn_from_usage(&usage_history)?;
let composition = learning_selector
.select_with_insights(&goal, &insights)?;
Performance Considerationsβ
Optimization Strategiesβ
- Component caching
- Result caching
- Parallel execution
- Lazy loading
- Connection pooling
Monitoring and Metricsβ
Metrics
- Invocation latency
- Success rate
- Resource usage
- Component utilization
- Error rates
Implementation Statusβ
π Plannedβ
- Agent component interface
- Component invocation from agents
- Result handling and error management
- Async component execution
- Agent-driven component selection
- Context-aware composition
- Dynamic adaptation
- Learning from usage patterns
- Agent collaboration patterns
- Shared component state
- Conflict resolution
- Workflow orchestration
Related Documentationβ
- Technical Architecture Roadmap
- Core Architecture Specification
- Global Component Graph
- Agent System Architecture
Note: This specification is extracted from the OpenKor T4 document. Detailed integration patterns may need manual review from the source PDF.